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ABSTRACT The proliferation of unmanned aerial vehicles (UAV), i.e., drones, in communication systems
has recently attracted both industry and academia. This is mainly due to their flexible capabilities and
features, which can support a wide range of communication applications. More specifically, drones can
offer better coverage, better capacity, and a many-fold quality-of-service enhancement. Accordingly, recent
communication technologies have been integrated with drones to support the unprecedented communication
requirements of beyond fifth-generation (B5G) and 6G networks. Upon these bases, this paper sought
to investigate the potential capabilities of multi-antenna drones in an uplink transmission cognitive radio
(CR) indoor environment. With such an integrated system, a set of multiple-antenna drones communicates
with a CR BS through the opportunistic utilization of the available channels without affecting the primary
user’s activities. In particular, this paper proposes an adaptive power channel assignment (APCA) protocol
that aims to minimize the per-drone transmit power under a set of relevant CR-related and quality-of-
service constraints. The constraints include the minimum rate requirements, the probability of success,
per-antenna power, the minimum SNR, and relevant CR-related constraints. Furthermore, this paper attempts
to mathematically prove that the formulated optimization problem is convex, thus, the optimal solution can
be attained. Accordingly, the conventional convex algorithms are adopted to solve the problem and obtain
the solution. The proposed APCA protocol is capable of selecting the channel that requires the minimum
power. To investigate the performance of the proposed APCA protocol, we compare its performance against
that of the conventional equal-power allocation. Simulation results reveal that the proposed APCA protocol
significantly improves system performance in terms of the overall transmit power.

INDEX TERMS UAVs, indoor propagation, cognitive radio, power-allocation, channel assignment, convex-
optimization.

I. INTRODUCTION
Unmanned aerial vehicles (UAV) platforms have been
recently configured as potential candidates to support a
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wide range of daily life services and applications [1], [2].
More specifically, due to their ease of deployment, high
mobility, low maintenance cost, and ability to hover, UAV
platforms, i.e., drones, can support a large set of civilian
and military applications, including navigation, control, and
reconnaissance [3]. Accordingly, recent research efforts have
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promoted drones to play a key role in the advances of support-
ing wide-scale beyond fifth-generation (B5G) networking.
In fact, this is due to the drones’ abilities to cover hard-to-
reach areas as well as crowded hot spots through initiating
line-of-sight (LoS) communication, especially for cell-edge
users [4], [5]. Accordingly, current research directions are
focusing on the integration of drones with the proposed
B5G architecture. This integration offers a considerable
improvement on the quality-of-service (QoS). However,
it is important to note that such integrated approaches
require addressing several new design challenges, including
those related to the communication protocols, deployment
strategies, and developing appropriate resource allocation
techniques that are capable to support the QoS require-
ments. In particular, B5G/6G networks should be able to
offer reliable and energy-efficient communication services
with high data rates while supporting a massive num-
ber of users [6]. Over the past few years, several tech-
niques have been proposed and investigated to support
these unprecedented requirements. The proposed techniques
include multiple antennas techniques [7], cognitive radio
(CR) [8], non-orthogonal multiple access (NOMA) [9], and
Millimeter-Wave communications [10]. To be specific, the
multiple antennas technique, such as multiple-input multiple-
output (MIMO), is implemented to increase spectral effi-
ciency by transmitting and receiving multiple data streams
over the same time-frequency resources, which as a result
facilitating the signal processing process, decreasing the
transmit power, and mitigating small-scale fading [11], [12].
On the other hand, CR technology has been also considered
as a potential solution to enable the efficient and oppor-
tunistic spectrum’s utilization by the unlicensed users, i.e.,
secondary users (SUs), while maintaining the primary user
(PU) activities without any interruption [13], [14]. This can be
achieved by assuming that the CR network (CRN) can sense
the surrounding radio frequency environment and select the
operating channels that do not interfere with the licensed PU
networks. To this end, it has been widely agreed that there
is no stand-alone technology that can individually support all
the B5G requirements [15], [16]. Therefore, the integration
between technologies has been recognized as a potential
solution for addressing the requirements of future wireless
communication systems [17].

A. MOTIVATION
Due to the vital importance of employing UAVs in indoor
communication applications, such as providing security solu-
tions, societal safety, indoor healthcare administration, and
extended high-speed coverage in crowded indoor spaces
(e.g., shopping malls), this paper considers the uplink
transmission of MIMO-based cognitive-enabled B5G/6G
indoor-flying networks. In addition, due to UAVs’ size
and their limited battery capacity, the power consumption
of UAVs affects not only the flying time but also the
potential capabilities of UAVs in future wireless commu-
nication systems. Therefore, energy-efficient protocols are

needed to meet the exponential growth in the deployment of
UAVs in communication systems. Specifically, developing
power-aware communication protocols and strategies poses
an important challenge in enabling efficient UAV deploy-
ment. Accordingly, this paper proposes a powerminimization
framework for a MIMO-based CR-enabled B5G/6G indoor-
flying network. This framework aims to minimize the overall
transmit power of each UAV while satisfying a set of QoS
requirements.

B. CONTRIBUTION
In this paper, we consider an uplink indoor UAV-based sys-
tem that employs CR technology with MIMO, which is
referred to as a MIMO-based CR-enabled indoor-flying net-
work throughout this paper.With such integrated system, a set
of multi-antenna drones aims to transmit data for a CR BS
(BS) over a set of idle channels. The applications of such an
indoor environment include those related to the controlling of
manufacturing industry, indoor monitoring, and greenhouse
applications [18], [19]. In particular, we develop a joint power
minimization and channel assignment framework aiming to
minimize the per-drone transmit power while satisfying a
set of relevant QoS and CR constraints. We summarize the
main contributions of this paper as follows: Firstly, we char-
acterize the uplink transmission of an indoor MIMO-CR
UAV-based system. Next, we formulate the problem of the
power-controlled channel assignment. To be specific, Unlike
most of the previous research in the literature, the proposed
approach in this paper considers the per-antenna power con-
straints for each drone [20], [21]. The formulated optimiza-
tion framework is shown to be a convex one, which as a
result, can be optimally solved using standard polynomial-
time methods. Accordingly, considering the computed power
levels over the different idle channels, each drone selects the
channel that achieves the minimum required power. We con-
duct simulation experiments to evaluate the performance of
our proposed protocol compared to a benchmark approach,
namely the equal-power allocation approach.

C. RELATED WORK
Recently, several research works have investigated the poten-
tial capabilities of combining drones with recent commu-
nication systems. For example, an CR UAV-based system
with single-antenna approach has been discussed in [22]
and [23]. More precisely, the authors in [22] have discussed
the energy management for UAV-enabled CR system, where
an optimization framework that aims to maximize the number
of transmitted bits is developed. Furthermore, the secure
communication of a single-input single-output (SISO) CR
UAV-based system has been discussed in [23], where the
achieved rates by the CR users are maximized by robustly
optimizing the UAV’s trajectory and transmitting power.
On the other hand, the authors in [24] have investigated the
joint UAV trajectory and power allocation optimization for
NOMA protocol in CR network, where it has been assumed
that a UAV node transmits data streams to multiple SUs by
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using of NOMA protocol under the interference constraint
to the PU. In order to maximize the sum rate of all SUs, the
UAV trajectory as well as the total transmission power and the
power allocation scheme for NOMA are carefully designed.

Additionally, other research efforts have been conducted
for MIMO-CR UAV-based systems. For example, an uplink
MIMO-CR UAV-based system has been considered in [24],
where closed-form expressions of the optimal PU and SU
transmit power levels for space alignment relay-assisted sce-
nario have been derived. Furthermore, the work in [25]
has considered a CR-MIMO networks for mmWave waves,
where sum-rate maximization problem has been considered
under a per-user minimum rate constraint. On the other hand,
the work in [26] has assumed that a multi-antenna UAV
acts as BS, where the lens on the UAV are utilized as
a transmission array. To end with, a single multi-antenna
UAV system communicating with two users has been inves-
tigated in [27], where the Ricean fading model with LoS
and non-LoS (NLoS) links were considered. With this, the
beamforming vectors that maximize the achievable ergodic
sum-rate are evaluated. In particular, the sub-optimal beam-
forming pre-encoder with the knowledge of CSI at the UAV’s
transceivers was proposed.

D. PAPER ORGANIZATION
The rest of the paper is structured as follows. Section II
presents the network model, characterizes the indoor chan-
nel propagation, and describes the MIMO-based network
capacity analysis. In Section III, the problem statement and
QoS constraints are introduced. Section IV develops power-
minimization and channel assignment frameworks, and
provides the proposed APCA protocol. Section V provides
a set of simulation results to validate the proposed system.
Finally, Section VI concludes the paper.

II. NETWORK AND PROPAGATION MODELS
A. NETWORK MODEL
In this paper, we consider an uplink MIMO CR-based
UAV-based indoor system, in which a set of multi-antenna
CR-capable drones communicates with a CR multi-antenna
ground BS. Each UAV is equipped with N uncorrelated
antennas, where it is also assumed that the noise is uncor-
related across the receiver’s antennas [28]. The CR-enabled
drones coexist with several licensed PU networks (PRNs),
each with its own licensed spectrum and carrier frequency.
Let M represent the set of all PR channels, where M =

{1, 2, · · · ,M}, and M is the number of the available chan-
nels. The communications between the drones and the BS
are coordinated over a common control channel (CCC). The
competing drones access the available spectrum through a
CSMA/CA-based protocol with control packet handshaking,
which is implemented over the CCC. The status of each PU
channel is modeled using a two-state BUSY/IDLE alternating
renewal process, where the ’BUSY’ state indicates that the
channel is not available for CR communications, while the

’IDLE’ state indicates that the channel can be utilized by the
drones using the federal communications commission (FCC)
maximum allowable power limit (P(i)max) [28]. Accordingly,
each CR user, i.e., drone, can sense the channel usage of the
different PU channels. We assume the channel usage pattern
over each channel slowly changes with time, and drones
can obtain the PU spectrum usage pattern by conducting
cooperative spectrum sensing with neighboring CR devices.
In CR operating environment, transmission reliability is a
very challenging task because of the PU activities and fading
conditions. Thus, it is essential in CR-based communications
to provide network availability guarantees in terms of packet
success performance. Thus, we consider that a given data
packet transmission can proceed over a given channel i only
if the success probability over that channel is greater than a
predefined probability of success threshold, determined by
the application layer. Fig. 1 shows an illustrative example of
a network model of multiple-antenna drones communicating
with a multi-antenna CR BS within an indoor environment,
i.e., a shopping mall.

B. INDOOR PROPAGATION MODEL
To investigate the performance of our proposed UAV-based
MIMO communication system, it is crucial to characterize
the corresponding indoor channel propagation. In fact, the
indoor environments are typically characterized by their rel-
atively limited space, high obstacle density, and dynamic
user behavior. These considerations limit the UAVs’ flight
altitude, flight speed, and distance toward the ceiling, objects,
and possibly other UAVs. Specifically, in such an in-door
operating environment, the UAV flies at a relatively low
altitude (within 2 to 3 meters from the ceiling) at a height
of a few meters with a relatively low speed to avoid accidents
and result in minimal disturbance to users. In general, rotary-
wing UAVs are more suitable for the indoor environment
as they can hover in the air with zero speed [29]. Such
unique characteristics of drones’ operating indoor environ-
ments, directly impact the LoS probability and multi-path
components. Specifically, the mobility of drones influences
Doppler spread. However, Doppler is very small for hover-
ing drones because of the relatively limited indoor space,
which usually limits the drone’s speed and motion. In the
considered network model, we assume that the UAVs hover
at a relatively low speed, resulting in negligible impacts of
Doppler spread on communication performance. With such
limited Doppler spread and noting that the BS in our network
model is statically mounted at or near the ceiling (i.e., fixed
location), the uplink channel between the UAVs and BS can
be modeled using a rich scattering channel model with an
LoS.We note that several studies have been carried out to pro-
vide accurate propagation models for rich scattered indoor/
small-world environments (e.g., [30], [31]). In fact, for a wide
range of frequencies, the presented indoor channel models
in [30], [31] have been demonstrated as adequate propagation
models for indoor communications with LoS and NLoS com-
ponents. In our work, we adopt the rich scattered with LoS
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FIGURE 1. A network of drones in an indoor environment.

indoor propagation model presented in [30] to characterise
the uplink channel between the communicating drones and
the BS. In specific, the path loss in the indoor environment,
i.e., the shopping mall environment, is estimated based on the
close-in free space (CIF) reference distance model, where the
frequency-weighted path loss exponent is given as [30]:

ζ [dB] = FSPL(f , 1m)+ 10n(1+ b(
f − f0
f0

)) log2 (
d
1m

)

+XCIFσ , (1)

where b is an optimized parameter that captures the slope
of the drone, d is the distance between the communicating
drones (in meters), XCIFσ is the shadow fading with σ in dB,
and n is the path loss exponent and FSPL is the free space
path-loss at a distance of 1 mwith carrier frequency f . In fact,
FSPL can be evaluated as,

FSPL(f , 1m) = 20 log10 (
4π f
c

), (2)

where c is the speed of light, f0 is a fixed frequency point (a
reference for all frequencies). The term f0 can be computed
as,

f0 =

∑K
k=1 fkNk∑K
k=1 Nk

, (3)

where K is the number of unique carrier frequencies in the
band, andNk is the number of path loss data points associated
with the kth frequency (fk ). Because of the limited impact
of drones’ mobility on Doppler spread due to their relatively

slow mobility and fixed receiver (BS) location, the described
indoor propagation model in this section [30] can be used to
characterise the uplink channel between the drones and the
BS in our work.

C. MIMO CHANNEL MODEL, ACHIEVED CAPACITY, AND
SUCCESS PROBABILITY
The MIMO channel for a system with N × M antennas is
typically characterized by the channel matrix H . The rank
of the matrix H , denoted by r ≤ min(N ,M ), characterizes
the achieved capacity of the system [32]. In fact, if the rank
of H is r , the system is equivalent to r parallel channels.
In this case, the MIMO capacity can be viewed as the capac-
ity of r parallel single-input single-output (SISO) channels,
where the channel gains are related to the Eigenvalues of
HHH . Specifically, the MIMO capacity can be reduced to
the achieved capacity of r parallel channels. It has been
shown that when the MIMO channel is set up such that each
eigen-channel of H is independent (r = N ), the capacity
gains can be made linear [32]. Recall that in our system
model, we consider an indoor UAV communication environ-
ment with limited Doppler spread (due to the relatively low
UAV speed and fixed receiver location) and rich scattering
environment with LoS components. Under this operating
environment and by implementing a proper antenna placing
similar to the ones proposed in [33], [34], and [35], each
eigen-channel ofH becomes independent, resulting in uncor-
related MIMO channels (i.e., H is full rank with r = N ).
Thus, each pair of transmit-receive antennas provides a signal
path from the UAV to the BS as demonstrated in [36], [37],
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and [38]. Thus, each drone can transmit N independent data
streams to the BS, in which the achieved data rate over
the N antennas for that drone on a given channel i can be
computed as

R(i) =
N∑
j=1

R(i)j . (4)

where R(i)j = W log2 (1+ α
(i)
j P

(i)
j ) denotes the achieved data

rate on antenna j over channel i at the BS, W is the channel

bandwidth, α(i)j =
ζ
(i)
j

No
is the normalized channel power gain,

and P(i)j is the allocated power to antenna j over channel i.
A CR drone transmission is said to be successful over

a selected channel i if-and-only the needed transmission
time is less than the selected channel availability time.
It is worth noting that in CR-based networks, the impact of
decoding errors on the success probability performance can
be significantly mitigated by implementing efficient error
correction mechanisms at the CR users [39]. By mitigating
the impact of decoding errors, a CR data packet transmission
is considered to be successful over a selected channel i if
there is no collision with the uncontrollable PU activities.
The feasibility of this consideration has been demonstrated in
several previous works [39], [40]. Accordingly, for a packet
of length D and transmission rate of R(i), the required trans-
mission time over each channel i can be determined as tx (i) =
D/R(i). Given that the BUSY and IDLE periods over the i
PU channel are exponentially distributed random variables,
the probability of packet success over channel i for CRNs
has been derived in several previous works (e.g., [39], [40])
as:

P(i)s = e
−

D
R(i)µi . (5)

III. PROBLEM DEFINITION AND QoS CONSTRAINTS
Assuming a given drone, namely A, wishes to transmit to the
CRBS. Accordingly, it senses the CCCfirst in order to search
for the set of the idle channels. When the CCC is sensed idle,
the drone A competes to access the CCC using a CSMA/
CA-based protocol. Upon accessing the CCC, the droneA and
the BS exchange the needed control packets to agree on the
operating channel and transmit power levels). Specifically,
for the uplink communication between the drone A and the
ground CR BS, the set of idle channels, the set of available
antennas per drone, the CSI over each antenna-channel com-
bination between the drone A and the CR BS, our objective is
to find the appropriate channel assignment that requires the
minimum possible total transmit power while achieving a set
of relevant QoS and CR-related constraints. Such constraints
include:

C1. QoS constraint: The drone A should achieve a mini-
mum required rate demand (RD) over the ith channel, ∀i ∈M.

This constrain can be mathematically written as,

R(i) =
N∑
j=1

W log2(1+ α
(i)
j P

(i)
j ) ≥ RD.

C2. Total power constraint: The allocated power for the
different antennas over the selected channel i should not
exceed the maximum allowable total transmit power over that
channel (Ptotal). This constrain can be mathematically written
as,

N∑
j=1

P(i)j ≤ Ptotal

C3. Per-antenna constraint:The allocated power for each
antenna over the selected channel i should not exceed the
maximum per-antenna power Pper . This constrain can be
mathematically written as:

P(i)j ≤ Pper , j = {1, . . . ,N }, ∀i.

C4. Probability of success constraint: The probability of
successfully transmission over the selected channel i should
be greater than a threshold value γ , where γ is application
dependant. This constrain can be mathematically written as,

P(i)s ≥ γ
∗.

C5. Per-antenna SNR constraint: The received SNR at
antenna j over the selected channel i between A and the BS
should be greater than a pre-defined SNR threshold of µ∗.
This constrain can be mathematically written as:

SNR(i)
j ≥ µ

∗, j = {1, . . .N }.

IV. THE PROPOSED POWER-MINIMIZATION AND
CHANNEL ASSIGNMENT ALGORITHM
To explore the potential capabilities of the considered
MIMO-CR UAV-based system, we develop a power-
minimization framework and channel assignment approach
that aim to select the operating channel that requires the
minimum total transmit power for each drone while satisfy-
ing the aforementioned set of relevant QoS and CR-related
constraints. To be specific, we determine the per-antenna
power allocation for each drone that results on minimizing
the overall needed transmit power over each idle channel
i ∈M′. Then, the output of the first stage is used to select
the operating channel i∗ that requires the minimum needed
overall transmit power.

A. THE POWER MINIMIZATION PHASE: FORMULATION
AND SOLUTION
As mentioned before, to select the appropriate channel
assignment, the minimum required transmit power for each
drone over all idle channels i ∈M′ needs to be firstly com-
puted. The objective function can be mathematically written
as min

P(i)j

∑N
j=1 P

(i)
j .
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Given the mathematical presentations of the objective
function and the designed constraints in C1 to C5, the
power-minimization problem over a given idle channel i can
be mathematically written as:

min
P(i)j , ∀i

N∑
j=1

P(i)j (6a)

s. t.
N∑
j=1

W log2(1+ α
(i)
j P

(i)
j ) ≥ RD, (6b)

N∑
j=1

P(i)j ≤ Ptotal, (6c)

P(i)j ≤ Pper , j = {1, . . .N }, (6d)

P(i)s ≥ γ
∗, (6e)

SNR(i)
j ≥ µ

∗, j = {1, . . .N }. (6f)

It is worth pointing out that the constraint in (6e) can be
re-written as a function of the achieved rate, such that R(i)j ≥

D
µj ln γ ∗

. Accordingly, the constraints (6b) and (6e) can

be combined into a single constrain as follows:

N∑
j=1

W log2(1+ α
(i)P(i)j ) ≥ R∗i ,

where R∗i = max(RD,
D

µj ln γ ∗
). The SNR on antenna i over

channel j is SNR(i)j = P(i)j ∗ α
(i)
j and the minimum SNR on

antenna j over channel i is µ∗ = P(i)THR(j) ∗ α
(i)
j . With this,

the constraint (6f) can be written in terms of P(i)j as,

P(i)j ≥ P
(i)
THR(j), j = {1, . . .N }.

Accordingly, the power minimization problem in (6) can be
re-written as follows:

min
N∑
j=1

P(i)j

s.t.
N∑
j=1

W log2(1+ α
(i)P(i)j )≥ R∗i ,

N∑
j=1

P(i)j ≤ Ptotal,

P(i)THR(j) ≤ P
(i)
j ≤ Pper , j = {1, . . .N }. (7)

Lemma 1: The optimization problem in (7) is a con-
vex optimization problem that can be optimally solved
in polynomial-time using standard convex optimization
techniques.
Proof:We note that the objective function is an affine func-

tion in terms of P(i)j , which is convex. In addition, the second
and third constraints are also linear constraints in terms of

FIGURE 2. The block diagram of the proposed APCA protocol.

Algorithm 1 The Proposed APCA Protocol
Input: Ideal channel list M′, N , R∗i , γ , Pper , W , the
channel power gain α(i)j
LetM′′

= 8

for i = 1 :M′ do
Solve (7) for P(i)j using standard convex optimization

methods
if (7) is feasible
M′′

⇐⇒ M′′
+ {i}

P(i)R ⇐⇒
∑N

j=1 P
(i)
j

end if
end for
if M′′

6= 8

i∗ = argmini∈M′′

{
P(i)R

}
Output: feasible assignment i∗,P(i

∗)
j , P(i

∗)
R

else
Output: no feasible assignment

end if

P(i)j , which is considered an affine concave function. Now,
we prove that the first constraint is also convex. We define
this constraint as:

f (P(i)j ) =
N∑
j=1

W log2(1+ α
(i)P(i)j )− R∗i

To check the convexity of f (P(i)j ), we compute the correspond-

ing Hessian matrix Hf (P
(i)
j ) = O2f (P(i)j ), which is given in

(8), as shown at the bottom of the next page. It is clear that all
Eigenvalues ofHf (P

(i)
j ) are negative, and henceHf is negative

semidefinite. Thus, the function f (P(i)j ) is concave. Since the
objective function and constraints are convex, our problem
is convex. This means that it can be optimally solved using
standard convex optimization methods to determine whether
the problem is feasible (i.e., channel i can be used for the
drone to BS communication) or the problem is infeasible (the
channel cannot be used for the drone to BS communication).
Observation: Due to the non-decreasing nature of the

achieved rate with the transmit power, the equality in the first
constraint in (7) always holds, and thus, the optimal solution
can be found. This has been proved by contradiction in [41]
(Section III.B). This is because the lowest transmit power
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levels that satisfy our power-minimization objective are the
ones that result in a total data rate equal to the demand rate.

B. THE CHANNEL ASSIGNMENT PHASE
To compute the optimal channel assignment that minimizes
the overall transmit power, the power-minimization problem
in (6) is solved for each idle channel i ∈ M′. If the power-
minimization problem is feasible for channel i, this channel
is added to a feasible channel list M′′. Then, the computed
feasible per-antenna transmit powers, P(i)j , j ∈ N , are used to

compute the needed total transmit power over channel i (P(i)R )
as:

P(i)R =
N∑
j=1

P(i)j . (9)

Given P(i)R , ∀i ∈ M′′, the channel i∗ that provides the min-
imum needed transmit power for the transmitting drone can
be found as:

i∗ = argmini∈M′′

{
P(i)R

}
(10)

Algorithm 1 and Figure 2 provide the pseudo-code and the
block diagram of the proposed power allocation and channel
assignment protocol (APCA).
Proposition 1: Our proposed optimal power allocation

algorithm is applicable to any arbitrary channel matrixH with
r < N (i.e., r parallel channels instead of N ).
Proof: It has been shown that an N × N MIMO channel

with arbitrary H matrix of rank r < N can be represented
by r orthogonal channels with gain λi, i = {1, . . . r}, where
λi is the ith Eigenvalue of HHH . In this case, the power
should be allocated over the r Eigen channels instead of the
N physical channels [32]. Hence, our proposed algorithm can
be executed over the r Eigen channels, resulting in a total
achieved rate of

∑r
j=1 R

(i)
j over each idle channel i.

V. PERFORMANCE EVALUATION
We conduct simulation experiments using Matlab pro-
grams to evaluate the performance of our adaptive
power-minimization channel assignment (APCA) protocol

and compare its performance with that or reference proto-
cols [42]. The CVX solver has been used to solve the convex
optimization problems and generate the reported results [43].

A. SIMULATION SETUP
We consider a network of drones in an indoor environment
that coexists with a PU network with 8 channels. These
drones are served by a CR BS. We assume that the number
of drones is 8. The drones opportunistically utilize the 8
PU channels, where the bandwidth of each channel is set to
5MHz. The data packet size and the noise spectral density are
set toD = 2 KB and 10−17 W/Hz, respectively. Furthermore,
the average availability periods of the PU channels are given
byµ = ξ×[0.02, 0.02, 0.025, 0.025, 0.04, 0.04, 0.05, 0.05],
where ξ represents the availability-time factor. The required
probability of success is assumed to be γ = 0.9, unless stated
otherwise. We set the operating frequency for the uplink
indoor channel model to f = 900 MHz, b = 0.01, f0 =
39.5 GHz, and the path loss exponent to n = 2.59. Each
drone is equipped with four antennas, i.e., N = 4. We set
the maximum transmitted power per antenna to 500 mW
and the maximum total transmit power for each drone to
1 W. In our simulation experiments, we compare the perfor-
mance of the proposed APCA protocol with that of two refer-
ence protocols: the equal-power channel assignment protocol
(EPCA) and the adaptive power-minimization CR-unaware
channel assignment (UAPCA) protocol under different PU
activity levels [42], [44]. The APCA and EPCA protocols
are designed while being aware of the dynamic PU activity,
whereas the UAPCA does not account for the PU activity.
On then other hand, EPCA assigns power equally among
the different antennas, whereas APCA and UAPCA perform
per-antenna power control. Furthermore, we investigate the
effect of idle probability PI , probability of success require-
ment γ , PU average channel availability duration, demand
rate, and the number of drones on network performance. Our
main performance metrics are the required transmit power,
energy efficiency, achieved success probability, and user sat-
isfaction. Energy efficiency is defined as the ratio between
the number of successfully served drones to the total con-
sumed transmit power (Users/Watt). On the other hand, user
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FIGURE 3. System performance versus idle probability for M = 8 .

FIGURE 4. System performance versus idle probability for M = 8.

TABLE 1. User satisfaction with high, moderate and low PU activity for
different number of CR-capable drones.

satisfaction is defined as the average number of successfully
served drones with their required QoS requirements.

B. SIMULATION RESULTS
We first investigate the system performance of the APCA,
EPCA, and UAPCA protocols as a function of the PU idle
probability (PI ). Fig. 3 and Fig. 4 demonstrate the over-
all transmit power, energy efficiency, and achieved success
probability performance as a function of PI for 5 and 10
CR-equipped drones, respectively. As it is seen in
Figs. 3 and 4, for a given QoS requirement and the same
number of PU channels, our proposedAPCA protocol signifi-
cantly outperforms the other two protocols in terms of energy
efficiency and consumed power, irrespective of PI . In addi-
tion, the APCA and EPCA protocols always provide the
required QoS guarantees because of their inherent PU activity

awareness, whereas the UAPCA cannot provide the required
success probability requirements. Specifically, Fig. 3a shows
that the total transmit power increases as PI increases up
to PI = 0.5 for all protocols. Then, the required transmit
power decreases as PI increases beyond 0.5. This is because
for PI ≤ 0.5, higher PI values increase the availability of
ideal channels, but still the number of ideal channels is less
than the number of competing drones. Thus, increasing PI up
to 0.5 increases the number of served drones, resulting in a
higher total required transmitted power. However, for PI ≥
0.5, the number of available channels becomes greater than
the number of competing drones (i.e., 5). In this case, all com-
peting drones will be served as long as PI ≥ 0.5, but increas-
ing PI results in a greater number of idle channels allowing
the drones to select the most power-efficient channels, result-
ing in reduced total transmit power as demonstrated in Fig. 3a.
On the other hand, Fig. 3b reveals that the energy efficiency
increases as PI increases. This is expected as increasing PI
results in more idle channels, and hence higher number of
served drones. A higher number of served drones results in
higher energy efficiency. For a network of 5 drones, Fig. 3c
reveals that the probability of success requirement γ is always
guaranteed for the APCA and EPCA protocols, irrespective
of PI . However, the UAPCA protocol does not provide the
required QoS requirements. This is because the APCA and
EPCA protocols are PU activity-aware, whereas UAPCA
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FIGURE 5. System performance versus the number of CR users.

does not account for the impact of PU activity on system
performance.

Furthermore, For a network of 10 CR-based drones,
Fig. 4 shows the overall transmit power, energy efficiency,
and achieved success probability performance as a function
of PI for the three protocols. Fig. 4a indicates that the
transmit power increases as PI increases. This is because
higher values ofPI result inmore channel availability, leading
to an increase in the number of served users and the total
needed transmitted power. Fig. 4b reveals that the increase
in the number of served drones, as a result of increasing
PI , enhances the energy efficiency performance despite the
need for a higher total transmitted power. For the case of
10 contending drones, Fig. 4c reveals that the probability
of success requirement γ is always guaranteed, irrespective
of PI . Because the UAPCA protocol does not provide the
required probability of success requirements, in the rest of

our experimental results, we focus on investigating the per-
formance of the APCA and EPCA protocols.

Fig. 5 shows the overall transmit power, energy efficiency,
and achieved success probability performance under high,
moderate, and low PU activity levels for a different number
of CR-based drones for both the APCA and EPCA protocols.
This figure reveals that, for a given QoS requirement and
the same number of served drones, our proposed APCA
protocol significantly outperforms the reference protocol
in terms of energy efficiency and consumed power, irre-
spective of PI and number of served users. Specifically,
Fig. 5a, 5b and 5c indicate that the transmit power increases
as the number of CR-based drones increases as serving a
larger number of drones results in a higher total transmit-
ted power. Figs. 5d, 5e and 5f indicate that the energy effi-
ciency decreases as the number of served CR-based drones
increases, irrespective of PI . This is because serving a larger
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FIGURE 6. System performance versus the PU average channel availability duration.

number of drones using the same number of PU channels
requires higher total transmitted power, which negatively
impacts energy efficiency. Figs. 5g, 5h and 5i demonstrate
that the probability of success requirement γ is always guar-
anteed for both protocols, irrespective of number of drones
and PI . Table 1 shows the user satisfaction under different
PU activity levels for a varying number of CR drones for
the APCA and EPCA protocols. This table indicates that
both protocols provide comparable levels of user satisfaction.
This table also indicates that user satisfaction increases as
the number of drones increases (i.e., the number of served
drones that opportunistically utilize the available PU channels
increases).

Furthermore, Fig. 6 shows the overall transmit power,
energy efficiency, and achieved success probability

performance under high, moderate, and low PU activity levels
for different values of the average availability periods of the
PU channels (µ). This figure reveals that, for a given QoS
requirement and the same number of served drones, our pro-
posedAPCAprotocol significantly outperforms the reference
protocol in terms of energy efficiency and consumed power,
irrespective of µ and PI . Specifically, Figs. 6a, 6b and 6c
indicate that the transmit power decreases as µ increases.
This is because higher values of µ result in a longer PU
channel availability time, leading to higher success proba-
bility and reduced power consumption. Figs. 6d, 6e and 6f
indicate that the energy efficiency increases as µ increases.
This is because increasing µ increases the success proba-
bility, resulting in less transmit power requirement and a
larger number of served drones. Under various PU activity
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FIGURE 7. System performance versus the required rate demand.

FIGURE 8. System performance versus γ with ξ = 0.4746.

TABLE 2. User satisfaction with high, moderate and low PU activity for
different µ.

levels, Figs. 6g, 6h and 6i show that the probability of suc-
cess requirement γ is always guaranteed, regardless of µ.
This is because our proposed protocol adapts its operating
parameters to achieve the imposed QoS requirements. Table 2
shows the user satisfaction under high, moderate, and low
PU activity levels for different values of µ. This table indi-
cates that user satisfaction increases as µ increases. This is
because increasingµ results in higher availability time for the
assigned channels, which significantly reduces the number of
droopedCR-enabled drone transmissions. Table 2 reveals that
APCA and EPCA protocols show comparable performance in
terms of user satisfaction.

Fig. 7 shows the energy efficiency performance under high,
moderate, and low PU activity levels versus the required
rate demand for the APCA and EPCA protocols. This figure
reveals that, for a given QoS requirement and the same num-
ber of served drones, our proposed APCA protocol signifi-
cantly outperforms the reference protocol in terms of energy
efficiency and consumed power for all values of rate demand
and PI . Specifically, Figures 7a, 7b and 7c indicate that
the energy efficiency decreases as the required rate demand
increases. This is because, with a fixed number of CR drones,
a fixed number of PU channels, and a given success require-
ment γ , achieving higher rate demands requires higher total
transmit power, leading to a significant reduction in energy
efficiency performance. Other results not shown here reveal
that the probability of success requirement γ is always guar-
anteed, irrespective of the rate demand and the PU activity
levels.

Fig. 8 reports the overall transmit power, energy efficiency,
and achieved success probability performance under high,
moderate, and low PU activity levels as a function of γ
for the APCA and EPCA protocols. This figure reveals that
our proposed protocol significantly outperforms the EPCA
protocol in terms of the consumed power and energy effi-
ciency for the same number of served users and PU channels
under different values of γ . The impact of increasing γ
appears when γ exceeds the value of 0.7. This is because
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TABLE 3. User satisfaction with high, moderate and low PU activity for
different rate demand.

achieving γ ≥ 0.7 requires achieving a higher data rate than
the required rate demand. Fig. 8a indicates that the transmit
power increases as γ increases. By increasing γ , higher
transmission rates are needed to fulfill the success probability
requirements. In order to achieve the required higher data
rates, higher transmit power levels are needed. According to
Fig. 8b, as γ increases, energy efficiency decreases. This is
because achieving higher values of γ requires increasing the
transmit power. Fig. 8c reveals that the probability of success
requirement is always guaranteed for all values of γ .
Table 3 shows the user satisfaction under high, moderate,

and low PU activity levels for different values of the required
rate demand. This table indicates that the APCA and EPCA
protocols depict comparable user satisfaction performance.
Note that the change in the demand rate does not affect
the level of user satisfaction. This is because both protocols
adapt their power allocation policy based on the required rate
demand.

VI. CONCLUSION
This paper integrated the CR and MIMO technologies into
an indoor flying network for the purpose of enhancing the
overall power consumption and energy efficiency. Specifi-
cally, we proposed an adaptive power-allocation and channel
assignment, i.e., APCA, protocol that aims to minimize the
per-drone transmit power while achieving rate demand, total
power, probability of success, and per-antenna constraints.
The proposed APCA protocol consists of two phases power
allocation and channel assignment. In the first phase, the
optimal power allocation per antenna over each ideal channel
for the communicating drone is computed through solving
convex power-minimization problems, each with the objec-
tive of minimizing the overall transmission power over each
idle channel. Given the computed optimal power allocation,
in the second phase, APCA assigns the channel with the
minimum needed transmit power to the drone transmission.
The advantage of our proposed protocol is that it determines
the most energy-efficient channel that requires the least pos-
sible transmit power. We compared the performance of the
proposed protocol with that of the equal-power protocol.
Simulation results revealed that our proposed APCA protocol
enhances the performance in terms of the overall total trans-
mitted power and energy efficiency.
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